Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2776: 43-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502497

RESUMO

Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.


Assuntos
Apicoplastos , Parasitos , Plasmodium , Toxoplasma , Animais , Humanos , Apicoplastos/genética , Apicoplastos/metabolismo , Simbiose , Toxoplasma/genética , Toxoplasma/metabolismo
2.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502570

RESUMO

The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Parasitos/metabolismo , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Compostos Orgânicos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
ACS Infect Dis ; 10(1): 155-169, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38163252

RESUMO

Replication of the malarial parasite in human erythrocytes requires massive zinc fluxes, necessitating the action of zinc transporters across the parasite plasma and organellar membranes. Although genetic knockout studies have been conducted on a few "orphan" zinc transporters in Plasmodium spp., none of them have been functionally characterized. We used the recombinant Plasmodium falciparum Zrt-/Irt-like protein (PfZIP1) and specific antibodies generated against it to explore the subcellular localization, function, metal-ion selectivity, and response to cellular zinc levels. PfZIP1 expression was enhanced upon the depletion of cytosolic Zn2+. The protein transitioned from the processed to unprocessed form through blood stages, localizing to the apicoplast in trophozoites and to the parasite plasma membrane in schizonts and gametocytes, indicating stage-specific functional role. The PfZIP1 dimer mediated Zn2+ influx in proteoliposomes. It exhibited preferential binding to Zn2+ compared to Fe2+, with the selectivity for zinc being driven by a C-terminal histidine-rich region conserved only in primate-infecting Plasmodium species.


Assuntos
Apicoplastos , Parasitos , Animais , Humanos , Plasmodium falciparum/metabolismo , Apicoplastos/metabolismo , Membrana Celular , Eritrócitos/parasitologia
4.
Vet Res ; 55(1): 10, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233899

RESUMO

Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.


Assuntos
Apicoplastos , Toxoplasma , Animais , Toxoplasma/genética , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , Homeostase , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
Elife ; 122023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108809

RESUMO

Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.


Assuntos
Apicoplastos , Ascomicetos , Malária Falciparum , Humanos , Plasmodium falciparum , Microscopia , Placa Amiloide
6.
PLoS Pathog ; 19(10): e1011713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883328

RESUMO

Isoprenoid precursor synthesis is an ancient and fundamental function of plastid organelles and a critical metabolic activity of the apicoplast in Plasmodium malaria parasites [1-3]. Over the past decade, our understanding of apicoplast properties and functions has increased enormously [4], due in large part to our ability to rescue blood-stage parasites from apicoplast-specific dysfunctions by supplementing cultures with isopentenyl pyrophosphate (IPP), a key output of this organelle [5,6]. In this Pearl, we explore the interdependence between isoprenoid metabolism and apicoplast biogenesis in P. falciparum and highlight critical future questions to answer.


Assuntos
Apicoplastos , Malária Falciparum , Parasitos , Animais , Parasitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Proteínas de Protozoários/metabolismo
7.
mBio ; 14(5): e0164023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732764

RESUMO

IMPORTANCE: Toxoplasma gondii and most other parasites in the phylum Apicomplexa contain an apicoplast, a non-photosynthetic plastid organelle required for fatty acid, isoprenoid, iron-sulfur cluster, and heme synthesis. Perturbation of apicoplast function results in parasite death. Thus, parasite survival critically depends on two cellular processes: apicoplast division to ensure every daughter parasite inherits a single apicoplast, and trafficking of nuclear encoded proteins to the apicoplast. Despite the importance of these processes, there are significant knowledge gaps in regards to the molecular mechanisms which control these processes; this is particularly true for trafficking of nuclear-encoded apicoplast proteins. This study provides crucial new insight into the timing of apicoplast protein synthesis and trafficking to the apicoplast. In addition, this study demonstrates how apicoplast-centrosome association, a key step in the apicoplast division cycle, is controlled by the actomyosin cytoskeleton.


Assuntos
Apicoplastos , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Toxoplasma/metabolismo , Actinas/genética , Actinas/metabolismo , Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Miosinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(34): e2309043120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590416

RESUMO

Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.


Assuntos
Apicoplastos , Cistos , Toxoplasma , Toxoplasmose , Animais , Feminino , Gravidez , Humanos , Toxoplasma/genética , Sistema Nervoso Central , Mamíferos
9.
Proc Natl Acad Sci U S A ; 120(28): e2214765120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406097

RESUMO

The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.


Assuntos
Apicoplastos , Malária , Parasitos , Animais , Apicoplastos/genética , Apicoplastos/metabolismo , Parasitos/genética , Parasitos/metabolismo , Sinais (Psicologia) , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária/metabolismo , Proteínas de Protozoários/metabolismo
10.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166116

RESUMO

Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite Plasmodium falciparum. Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.


Assuntos
Apicoplastos , Proteínas Ferro-Enxofre , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Apicoplastos/metabolismo , Enxofre/metabolismo , Ferro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo
11.
Vet Parasitol ; 315: 109888, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731210

RESUMO

The apicoplast, which is the result of secondary endosymbiosis, is a distinctive subcellular organelle and a crucial therapeutic target for apicomplexan parasites. The majority of apicoplast-resident proteins are encoded by the nuclear genome and target the apicoplast via bipartite targeting signals consisting of a signal peptide and a transit peptide. The properties and functions of these peptides are poorly understood, which hinders the identification of apicoplast proteins and the study for plastid evolution. Here, the targeting signals of the recently discovered apicoplast tRNA thiouridylase TgMnmA of Toxoplasma gondii were analyzed. Our data using a reporter (the enhanced green fluorescent protein) fused with individual fragments containing various numbers of its N-terminal amino acids unequivocally revealed that the first 28 amino acids of TgMnmA functioned as a signal peptide for cellular secretion. The N-terminal 150 amino acids were sufficient to direct the fusion protein to the apicoplast, whereas its deletion caused the fusion protein to be localized to the mitochondrion. Our data further demonstrated that the apicoplast, rhoptry, and mitochondrion shared similar targeting signals, indicating that the apicoplast localization peptide was trans-organellar in function. In addition, the apicoplast localization peptide was important for the healthy proliferation of tachyzoites. In conclusion, the targeting signals of the nucleus-encoded apicoplast-targeted protein TgMnmA have been mapped out and the importance of this localization peptide has been elucidated in the current study.


Assuntos
Apicoplastos , Toxoplasma , Animais , Toxoplasma/genética , Toxoplasma/metabolismo , Apicoplastos/metabolismo , Sinais Direcionadores de Proteínas/genética , Peptídeos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Aminoácidos/metabolismo
12.
mBio ; 14(1): e0364221, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625582

RESUMO

Atg8 family proteins are highly conserved eukaryotic proteins with diverse autophagy and nonautophagic functions in eukaryotes. While the structural features required for conserved autophagy functions of Atg8 are well established, little is known about the molecular changes that facilitated acquisition of divergent, nonautophagic functions of Atg8. The malaria parasite Plasmodium falciparum offers a unique opportunity to study nonautophagic functions of Atg8 family proteins because it encodes a single Atg8 homolog whose only essential function is in the inheritance of an unusual secondary plastid called the apicoplast. Here, we used functional complementation to investigate the structure-function relationship for this divergent Atg8 protein. We showed that the LC3-interacting region (LIR) docking site (LDS), the major interaction interface of the Atg8 protein family, is required for P. falciparum Atg8 (PfAtg8) apicoplast localization and function, likely via Atg8 lipidation. On the other hand, another region previously implicated in canonical Atg8 interactions, the N-terminal helix, is not required for apicoplast-specific PfAtg8 function. Finally, our investigations at the cellular level demonstrate that the unique apicomplexan-specific loop, previously implicated in interaction with membrane conjugation machinery in recombinant protein-based in vitro assays, is not required for membrane conjugation nor for the apicoplast-specific effector function of Atg8 in both P. falciparum and related Apicomplexa member Toxoplasma gondii. These results suggest that the effector function of apicomplexan Atg8 is mediated by structural features distinct from those previously identified for macroautophagy and selective autophagy functions. IMPORTANCE The most extensively studied role of Atg8 proteins is in autophagy. However, it is clear that they have other nonautophagic functions critical to cell function and disease pathogenesis that are so far understudied compared to their canonical role in autophagy. Mammalian cells contain multiple Atg8 paralogs that have diverse, specialized functions. Gaining molecular insight into their nonautophagic functions is difficult because of redundancy between the homologs and their role in both autophagy and nonautophagic pathways. Malaria parasites such as Plasmodium falciparum are a unique system to study a novel, nonautophagic function of Atg8 separate from its role in autophagy: they have only one Atg8 protein whose only essential function is in the inheritance of the apicoplast, a unique secondary plastid organelle. Insights into the molecular basis of PfAtg8's function in apicoplast biogenesis will have important implications for the evolution of diverse nonautophagic functions of the Atg8 protein family.


Assuntos
Apicoplastos , Malária , Parasitos , Animais , Apicoplastos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Malária/metabolismo , Mamíferos/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
13.
Protein Expr Purif ; 202: 106187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36216219

RESUMO

Recombinant expression and purification of proteins have become a staple of modern drug discovery as it enables more precise in vitro analyses of drug targets, which may help obtain biochemical and biophysical parameters of a known enzyme and even uncover unknown characteristics indicative of novel enzymatic functions. Such information is often necessary to prepare adequate screening assays and drug-discovery experiments in general. Toxoplasma gondii is an obligate protozoan parasite that is a member of the phylum Apicomplexa, can develop several neuro-degenerative symptoms and, in specific cases, certain death for human hosts. Its relict non-photosynthetic plastid, the apicoplast, harbours a unique de novo long-chain fatty acid synthesis pathway of a prokaryotic character, FASII. The FASII pathway shows plasticity and, is essential for many intracellular and membranal components, along with fatty acid uptake via salvaging from the host, therefore, its disruption causes parasite death. TgFabG, a FASII enzyme responsible for a single reduction step in the pathway, was recombinantly expressed, purified and biochemically and biophysically characterised in this study. The bioengineering hurdle of expressing the recombinant gene of a eukaryotic, signal peptide-containing protein in a prokaryotic system was overcome for the apicomplexan enzyme TgFabG, by truncating the N-terminal signal peptide. TgFabG was ultimately recombinantly produced in a plasmid expression vector from its 1131 base pair gene, purified as 260 and 272 amino acid proteins using a hexahistidine (6 × Histag) affinity chromatography and its biochemical (enzyme activity and kinetics) and biophysical characteristics were analysed in vitro.


Assuntos
Apicoplastos , Toxoplasma , Humanos , Apicoplastos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteína de Transporte de Acila/metabolismo , Oxirredutases/metabolismo , Ácidos Graxos/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
14.
Autophagy ; 19(4): 1258-1276, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36095096

RESUMO

In apicomplexan parasites, the macroautophagy/autophagy machinery is repurposed to maintain the plastid-like organelle apicoplast. Previously, we showed that in Toxoplasma and Plasmodium, ATG12 interacts with ATG5 in a non-covalent manner, in contrast to the covalent interaction in most organisms. However, it remained unknown whether apicomplexan parasites have functional orthologs of ATG16L1, a protein that is essential for the function of the covalent ATG12-ATG5 complex in vivo in other organisms. Furthermore, the mechanism used by the autophagy machinery to maintain the apicoplast is unclear. We report that the ATG12-ATG5-ATG16L complex exists in Toxoplasma gondii (Tg). This complex is localized on isolated structures at the periphery of the apicoplast dependent on TgATG16L. Inducible depletion of TgATG12, TgATG5, or TgATG16L caused loss of the apicoplast and affected parasite growth. We found that a putative soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein, synaptosomal-associated protein 29 (TgSNAP29, Qbc SNARE), is required to maintain the apicoplast in T. gondii. TgSNAP29 depletion disrupted TgATG8 localization at the apicoplast. Additionally, we identified a putative ubiquitin-interacting motif-docking site (UDS) of TgATG8. Mutation of the UDS site abolished TgATG8 localization on the apicoplast but not lipidation. These findings suggest that the TgATG12-TgATG5-TgATG16L complex is required for biogenesis of the apicoplast, in which TgATG8 is translocated to the apicoplast via vesicles in a SNARE -dependent manner in T. gondii.Abbreviations: AID: auxin-inducible degron; CCD: coiled-coil domain; HFF: human foreskin fibroblast; IAA: indole-3-acetic acid; LAP: LC3-associated phagocytosis; NAA: 1-naphthaleneacetic acid; PtdIns3P: phosphatidylinositol-3-phosphate; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; UDS: ubiquitin-interacting motif-docking site; UIM: ubiquitin-interacting motif.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Apicoplastos/genética , Apicoplastos/metabolismo , Etilmaleimida/metabolismo , Autofagia , Ubiquitinas/metabolismo , Proteínas de Protozoários/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE , Proteína 5 Relacionada à Autofagia/metabolismo
15.
Curr Opin Microbiol ; 71: 102255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563485

RESUMO

The apicoplast of Plasmodium falciparum is the only source of essential isoprenoid precursors and Coenzyme A (CoA) in the parasite. Isoprenoid precursor synthesis relies on the iron-sulfur cluster (FeS) cofactors produced within the apicoplast, rendering FeS synthesis an essential function of this organelle. Recent reports provide important insights into the roles of FeS cofactors and the use of isoprenoid precursors and CoA both inside and outside the apicoplast. Here, we review the recent insights into the roles of these metabolites in blood-stage malaria parasites and discuss new questions that have been raised in light of these discoveries.


Assuntos
Apicoplastos , Malária , Parasitos , Animais , Humanos , Apicoplastos/metabolismo , Malária/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Terpenos/metabolismo , Proteínas de Protozoários/metabolismo
16.
PLoS Pathog ; 18(11): e1011009, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449552

RESUMO

Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Redes e Vias Metabólicas , Parasitos/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
17.
Exp Parasitol ; 243: 108411, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342006

RESUMO

The target-based discovery of therapeutics against apicoplast, an all-important organelle is an overriding perspective. MEP pathway, an accredited drug target provides an insight into the importance of apicoplast in the survival of the parasite. In this study, we present the rational design strategy employing sustainable catalysis for the synthesis of benzodiazepine (BDZ) conformers followed by their biological evaluation as prospective inhibitors against the potential target of the IPP pathway, 1-deoxy-D-xylulose-5-phosphatereductoisomerase (DXR). The study reported the inhibitory profile of 8c and 6d against the quintessential step of the only drug target in the erythrocytic stages of parasite development. The potential compounds were identified to represent a novel class of inhibitors that serve as the lead molecules to impede the pathway and further affect the survival of the parasite.


Assuntos
Antimaláricos , Apicoplastos , Antimaláricos/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinas/metabolismo , Apicoplastos/metabolismo , Eritrócitos , Plasmodium falciparum
18.
Biochemistry ; 61(23): 2742-2750, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36346714

RESUMO

Plasmodium falciparumis the most common and harmful causative agent of malaria worldwide. As a member of the phylum Apicomplexa, P. falciparum is characterized by the presence of a unique and essential organelle called the apicoplast. Reminiscent of an algal chloroplast, the apicoplast possesses its own genome, which is maintained by a single apicoplast DNA polymerase (apPol). Ribonucleotides misincorporated into the genome are among the most common lesions encountered by DNA polymerases, and the ability to replicate past these lesions varies widely among characterized enzymes. Here, we have investigated the ribonucleotide (rNTP) misincorporation frequency of apPol and determined its reverse transcriptase (RT) activity across templating ribonucleotides. Pre-steady-state kinetic experiments indicate that apPol does not have an unusually high discrimination between deoxy and ribonucleotides, with frequencies ranging between 104 and 106 depending on the identity of the ribonucleotide. Once incorporated into its template, apPol can replicate across ribonucleotides using its RT activity, but extension of a deoxynucleotide basepaired with the ribonucleotide is slow relative to a canonical basepair. Exonuclease assays indicate that apPol proofreads ribonucleotides an order of magnitude faster than extension, suggesting that most, but not all, misincorporated ribonucleotides will be excised. Although the components have not been identified, ribonucleotide excision repair or other tolerance mechanisms may exist in the P. falciparum apicoplast, and more targeted proteomic efforts will be needed to elucidate them.


Assuntos
Apicoplastos , Apicoplastos/genética , Ribonucleotídeos , Plasmodium falciparum/genética , Proteômica , DNA Polimerase Dirigida por DNA/genética , DNA/genética , DNA Polimerase Dirigida por RNA
19.
PLoS Pathog ; 18(11): e1010922, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318587

RESUMO

Phosphoinositides are important second messengers that regulate key cellular processes in eukaryotes. While it is known that a single phosphoinositol-3 kinase (PI3K) catalyses the formation of 3'-phosphorylated phosphoinositides (PIPs) in apicomplexan parasites like Plasmodium and Toxoplasma, how its activity and PI3P formation is regulated has remained unknown. Present studies involving a unique Vps15 like protein (TgVPS15) in Toxoplasma gondii provides insight into the regulation of phosphatidyl-3-phosphate (PI3P) generation and unravels a novel pathway that regulates parasite development. Detailed investigations suggested that TgVPS15 regulates PI3P formation in Toxoplasma gondii, which is important for the inheritance of the apicoplast-a plastid like organelle present in most apicomplexans and parasite replication. Interestingly, TgVPS15 also regulates autophagy in T. gondii under nutrient-limiting conditions as it promotes autophagosome formation. For both these processes, TgVPS15 uses PI3P-binding protein TgATG18 and regulates trafficking and conjugation of TgATG8 to the apicoplast and autophagosomes, which is important for biogenesis of these organelles. TgVPS15 has a protein kinase domain but lacks several key residues conserved in conventional protein kinases. Interestingly, two critical residues in its active site are important for PI3P formation and parasitic functions of this kinase. Collectively, these studies unravel a signalling cascade involving TgVPS15, a novel effector of PI3-kinase in T. gondii and possibly other Apicomplexa, that regulate critical processes like apicoplast biogenesis and autophagy.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Apicoplastos/fisiologia , Toxoplasma/metabolismo , Autofagia , Autofagossomos/metabolismo , Parasitos/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Protozoários/metabolismo
20.
Malar J ; 21(1): 302, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303209

RESUMO

BACKGROUND: The resistance of Plasmodium falciparum to artemisinin-based (ART) drugs, the front-line drug family used in artemisinin-based combination therapy (ACT) for treatment of malaria, is of great concern. Mutations in the kelch13 (k13) gene (for example, those resulting in the Cys580Tyr [C580Y] variant) were identified as genetic markers for ART-resistant parasites, which suggests they are associated with resistance mechanisms. However, not all resistant parasites contain a k13 mutation, and clearly greater understanding of resistance mechanisms is required. A genome-wide association study (GWAS) found single nucleotide polymorphisms associated with ART-resistance in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2), and crt (chloroquine resistance transporter), in addition to k13 gene mutations, suggesting that these alleles contribute to the resistance phenotype. The importance of the FD and ARPS10 variants in ART resistance was then studied since both proteins likely function in the apicoplast, which is a location distinct from that of K13. METHODS: The reported mutations were introduced, together with a mutation to produce the k13-C580Y variant into the ART-sensitive 3D7 parasite line and the effect on ART-susceptibility using the 0-3 h ring survival assay (RSA0-3 h) was investigated. RESULTS AND CONCLUSION: Introducing both fd-D193Y and arps10-V127M into a k13-C580Y-containing parasite, but not a wild-type k13 parasite, increased survival of the parasite in the RSA0-3 h. The results suggest epistasis of arps10 and k13, with arps10-V127M a modifier of ART susceptibility in different k13 allele backgrounds.


Assuntos
Antimaláricos , Apicoplastos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Apicoplastos/metabolismo , Estudo de Associação Genômica Ampla , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...